Loop Shaping

Goal

Design a controller to achieve a set of specifications on the closed-loop system

Control Systems | Challenge

Closed-loop transfer functions are a highly nonlinear function of the control law

GK S 1
1+GK T 1+GK

Loop Shaping
T =

Colin Jones

Laboratoire d’Automatique
Define closed-loop characteristics in terms of open-loop response GK.

Shaping the response GK is linear in K, and much easier

2
Recall: Closed-Loop Transfer Functions
E(s)
0 —0 2

O+—V(s)

Two quantities that define the performance of the system:
Sensitivity & Complementary Sensitivity - Response of error E(s) to output noise V (s)

S(s) = %‘3 = m Sensitivity function

- Response of output Y'(s) to reference R(s)

Y (s) G(s)K(s)

RG) = T+ GEK() Complementary sensitivity function

T(s):=




Sensitivity & Complementary Sensitivity Functions

Sensitivity Function

_ E@s) _ 1
SO =V T TT R

- Impact of noise on the error

- Ideal value: 0

Complementary Sensitivity Function

_Y(s) _ G(s)K(s)
Ye(s) 1+ G(s)K(s)

T (s)

- Impact of reference on the output

- ldeal value: 1

Functions are complementary:

S(s) +T(s) = !

GOK() |

T 1+G(s)K(s)  1+G(s)K(s)

Changes in one will cause changes in the other - limits of performance

Complementary Sensitivity Function

|T (jw)| [dB]
M, 4
w
—3dB +
| K Gw)CGe)
IT(w) = | T RGoeCs

Desired shape:

- Low-frequency gain of 0 dB

- Small resonance peak M, at the resonant frequency w;,

- Large bandwidth defined by the pass-band [0, ws], and the cutoff-frequency wy

- High roll-off after w, to make the system insensitive to measurement noise,

and unmodeled dynamics

Frequency Response

The sensitivity and complementary sensitivity functions are transfer functions:

- We can compute their frequency responses: S(jw), T (jw)

- These describe the response of the system in terms of disturbance rejection

and tracking performance

- By shaping these, we can design a system with desired behaviour

- Complementarity represents an inherent tradeoff: tracking vs noise rejection

- Idea: Good tracking and noise rejection at low frequencies, bad at high

[dB]
[S(jw)l
0 e w
10
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Low gain / high stability margin



Example

(dB]

High gain / low stability margin
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Bandwidth Defines Rise Time & Settling Time
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Relation to Time-Domain Behaviours
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Magnitude of resonant peak related to the damping of the closed-loop system.
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Bandwidth Defines Rise Time & Settling Time Bandwidth Defines Rise Time & Settling Time
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Example 9.2



Open-Loop Properties < Closed-Loop Properties Loopshaping Goals

: K(jw)G(jw) 1
T(jw) = : — =1~ - -
o) =75 K(jw)G(jw) 1+ K(jw)G (jw) / .
5 g
. o o | E1
T (jw) = 1 for small w “~ K (jw)G(jw) large for small w 2 g2
- 2 =
3 |z 2
— Integrator (pole at 0) 5 g ‘_:f g ‘-:;
|7 (jw)| < 0dB for large w © |K (jw)G(jw)| < 0dB for large w 3! [5 2 Al
§o :% g w,
Low resonance peak “ Large stability margins = ° \
. WI
— Resonance when |1 + K (jw,)G(jwr)| is small
— K(jwr)G(jwr) = —1
Specified rise time/settling time ~ « Crossover frequency
(Note: L(s) = K(s)G(s) is the Loop gain)
— Open-loop crossover frequency ~ Closed-loop bandwidth Low-frequency slope (system type) and gain are chosen for steady-state error
Can describe good closed-loop behaviour via open-loop frequency response High-frequency roll-off is determined by actuator/ sensor limitations and system
bandwidth goals.
12
Closed-loop Bandwidth = Crossover Frequency Closed-loop Bandwidth =~ Crossover Frequency
The open-loop frequency response has been designed for
|KG(jw)| > 1 for w < we B /lKGﬁi/PMﬂz"
) 320 ;
|KG(jw)| < 1 for w > w, g Imwy \ lem-sse .
k) /.l\(
£ 1.0
. =07 -3
The closed-loop response is therefore g
g PM =90°
T(w)| = ‘7 & e ) T(jw)| = [KG(jo)|
TGl 1+ KG(jw) |KG|, w> we & \\/
S ol N -20
Around crossover, we have |KG(jw)| ~ 1 and T (jw) depends on the phase margin O Bandwidth 5. Sw. 100
KG(jw.) = =) — 79 o (rad/sec)
' KG(jews) e Closed loop bandwidth is within a factor of two of the crossover frequency
TGl = | TR GGw) | = |T=e e
Jjwe) e we < wBw < 2w,

If ¢ = 90°, then |7 (jw.)| = 0.707 = —3dB



Resonance and Phase Margin Resonance and Phase Margin

Consider the prototype open-loop model Consider the prototype open-loop model
G(s) Wn w2
S) = —F—"""—""F7—+ _ n
s(s+ 2¢wn) G(s) s(s + 2Cwn)
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Resonance and Phase Margin Loopshaping Goals

Consider the prototype open-loop model - K@ large for small w (Steady-state error)

G(s) = _wn - KG small for large w (Modeling errors, etc)
s(s 4+ 2Cwn . . .
(e Cn) - Crossover frequency chosen according to desired closed-loop bandwidth

1,00 - Good stability margins
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o= (=9
= & 080\ 55 ' '
S E 070 -\ 3 & & Goal: Choose K (s) to satisfy these requirements
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g9 050 A\ , 52 Damping ratio determines the
Z 8 \ o step response overshoot, and the Tools:
5 & 040 S8 . '
&2 a0 p‘—\ | &% size of the resonant peak.
o= = 9 ~ 9 . .
=8 020 \‘ S5 - Overall gain: Moves magnitude plot up and down

Z g

é 0.10 \\ o £ - Lead compensator

0 - + Lag compensator
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Lead Compensator

How much is the phase increased?

Max phase increase happens at the center of the pole and zero'

Wmax =

1
Tova

logw —1 lo i+10'
gmax—Q gTD g

The amount of phase lead at this point is

OZTD

)

. -« 1 — sin ¢max
SN G = 770 & = T oin b
90
—~ 70 f
& 60 - 8
) '
: Choose lead ratio 1/«
£ 30 for Gmax < 70° 2
0 | | | | | | | |
1 2 4 8 10 20 32 40 60 100

See Problem 6.44

19

20r gain at high frequencies may be too much, and multiple lead compensators should be used.

Lead Compensator

Within interval of interest
- Phase increased by ¢max

- Slope increased by
20dB/dec

Utility:
+ Place near crossover

frequency to increase
phase

Requirements:

10

5
2

D) 1
05
0.2

0.1
0.

90°

60°
LD(s)
30°

Phase Lead Compensator

20

0.1

oTp

Copyright ©2015 Pearson Education, Al Rights Reserved

- Steady-state error less than 0.1 in response to a ramp reference
- Overshoot of less than Mp < 25%

Consider the following system

20



Steady-state error less than 0.1 in response to a ramp reference

Gain margin = oo Phase margin = 52° o
This is a Type 1 system:

o~
o

— Error with respect to a ramp input is %
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Steady-state error less than 0.1 in response to a ramp reference
o Gain margin = co Phase margin = 18°
This is a Type 1 system:
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Try the simplest controller to improve this: Proportional gain K :90
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=
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Overshoot of less than Mp < 25%

From Slide 16 we see that a phase margin of 45° will do

— Add a phase lead compensator

Current phase margin is &~ 20° — Requires an increase of 25°

Lead compensator also increases gain — Increases crossover frequency
Increase phase by ~ 40° to compensate

Slide 19 shows « = 1/5 will increase phase by ~ 40°
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Gain margin = oo Phase margin = 18°
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) ] 0.755 + 1
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Quick and Dirty Using Bode’s Gain-Phase Relationship

Lead Design Summary

Generally three criteria Main idea: A low slope at crossover provides a good phase margin.

1. Crossover frequency <« Bandwidth, rise time and settling time e.g., —20dB/dec gives a phase margin of about 90°
2. Phase margin + Damping coefficient ¢ and overshoot M,
3. Low-frequency gain < Steady-state error

Design procedure

Slope must be constant for a decade around the crossover frequency for
approximation to hold. Equivalent to choosing 1/a = /5 ~ 3.

1. Choose system type and controller gain K such that De(s) = 35 + we
- steady-state gain targets are met ¢ Ts/3+ we
- open-loop crossover frequency is a factor of two below the desired closed-loop
bandwidth Ignore the phase plot, and work only with the magnitude plot.

2. Determine the increase in phase margin required (add about 10° to
compensate for bandwidth increase) and choose « to give the desired

increase.

3. Choose wmax to be the crossover frequency, and set Tp = wmal 7=

Note that this procedure may require customization for any particular system.



Gain-Phase Relationship Gain-Phase Relationship

Bode Gain-Phase Theorem Bode Gain-Phase Theorem (Simple form)

For any stable minimum-phase system (i.e, one with no RHP zeros or poles), the

phase of G(jw) is uniquely related to the magnitude of G(jw) ZG(jw) = n x 90°
where n is the slope of |G(jw)| in units of decade of amplitude per decade of
Z£G(jwo) = %/ (%) W(u)du  (in radians) frequency.

If the crossover frequency is wo, i.e, the gain is | K (jwo)G(jwo)| = 1, then
where
© /G (jwo) ~ —90° if n = —1 (—20dB / dec)

* M = log Magnitude = In |G (jw)| - /G (jwo) ~ —180° if n = —2 (—40dB / dec)

- w = normalized frequency = In(w/wo)

- ; Main idea: A low slope at crossover provides a good phase margin.
- W(u) = weighting function = In(coth|u|/2)

e.g, —20dB/dec gives a phase margin of about 90°

2Slope must be constant for a decade around the crossover frequency for approximation
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Simple Example Simple Example
Design a lead compensator for the system providing zero Design a lead compensator for the system providing zero
G(s) = iz steady-state error in response to a ramp input, around G(s) = = steady-state error in response to a ramp input, around
5 60° phase margin and a bandwidth of at least 100r/s. 5 60° phase margin and a bandwidth of at least 100r/s.
40 T LU T T 40 T LU T T
20 |- s 20 - s
— 0 y — 0 y
[ala] [aa]
S 20 | 2 20} |
() D
g —40 | g 40 Zero at 100/3 |
S —60| y @ 60 B |
= =
—80 - - —80 |- 2o 100 Pole at 100 - 3 |
S+
—100 |- = —100 | D.(s) = ————— f
(5) = 73100
7120 L1 7120 L L I [ \‘ )
10! 10? 10° 10 10? 10°
Frequency rad/sec Frequency rad/sec



Simple Example

Design a lead compensator for the system providing zero
steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 100r/s.

40

—40

Magnitude (dB)

—100
—120

10*

10?
Frequency rad/sec

103
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Simple Example

Design a lead compensator for the system providing zero
steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 100r/s.

G(s)::gé
L
0.5
8.00 0 bl

0.08

0.09

0.10
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Simple Example

Design a lead compensator for the system providing zero
steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 1007 /s.

Magnitude (dB)

40

—40

—100

Choose K = 70dB ~ 3,000

—120
10*

10° 10
Frequency rad/sec
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Interpretation of PD Controller

Consider the PD controller:

K(s) =K(1+Tbs)

This is a lead compensator with the pole at s = —oo, or a = 0.

Magnitude (dB)

Phase (deg)

1

Tq

=

©
(=)

45 |-

Frequency rad/sec
32



Example - PD Controller Steady-State Error

- Steady-state error to step input is zero
G(s) =0 05_89=s :
=505 + 2.05) - Track ramp with steady-state error less than 0.05

Design a PD controller such that: Consider a proportional controller: K(s) = K

- Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05
- Closed-loop step response with time-constant less than 0.07s

- Phase margin greater than 60°

33 34

Steady-State Error Frequency Response

- Steady-state error to step input is zero

60 T T TTTITT] T T T TT1TT] LA T T TTTITT] T T T TT1TT] T T T 1117
- Track ramp with steady-state error less than 0.05
40 - N
Consider a proportional controller: K(s) = K 50| |
80 — s
K(s)G(s) = K-0.056————— —
(5)G(s) s(s + 2.05) @ 0
Type 1 system S 20| m
o}
- Zero steady-state error to a step % _aol i
©
- Steady-state error to a ramp reference r(t) = tis 1/v =
,60 - -
. B(0) 80
vi=1 IK(5)G(s) = K—+ =K -0.05—— =K -1.9
o= lim oK (5)Gls) = K00 oo wol |
Error=1/(K -1.9) <0.05 100 |
Therefore,the aan>1 Oorlg :lor (| Lol Ll Lol Lol (R
¢ = 1/(0.05-1.9) = 10.5 1072 10! 10° 10! 10? 10° 101

Frequency rad/sec

34 35



Frequency Response Add Lead Compensator

Goal: Improve phase margin

60 L] T T A 1
lh,érééé,?,galn by 10.5 to meet steady-state ramp error Add derivative term (Lead compensator)
40 .
K(s) =10.5(1+ Tps)
20
Slope at crossover is too high How to choose Tp?
© .
- - Sets bandwidth of the system
5 201 - Roughly sets the time constant of the closed-loop step response
oy
40|
=
760 -
780 -
71007 Lol Lol Ll Lol Lol \\\\7
1072 1071 10° 10" 10? 10° 10*
Frequency rad/sec
35 36
Bandwidth and Time Constant Add Lead Compensator
Assume: Phase margin of about 90° at a crossover frequency of w. Goal: Improve phase margin

For frequencies near w,., the open-loop gain is approximately: Add derivative term (Lead compensator)

. . We
K(jw)G(jw) =~ T K(s) =10.5(1+ Tps)
The step response is approximately: How to choose Tp?
Y(s) = K(s)G(s) 1 % 1w 1_ -1 1 - Sets bandwidth of the system

T1+K()G(s) s 1+% s stwe s stwe s ,
- Roughly sets the time constant of the closed-loop step response

Gives the time response: )
Goal: Time constant less than 0.07s

Choose w. > 1/0.07 = 14.3

The system time constant is approximately 1/w.
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Frequency Response

Magnitude (dB)
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Frequency Response

Magnitude (dB)
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Frequency Response
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Frequency Response
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Example - PD Controller

80— s

G(s) = 0.05m

Design a PD controller such that:

- Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

- Closed-loop step response with time-constant less than 0.07s
- Phase margin greater than 60°

Our final controller is:

K(s) =10.5- (14 5/2)

Lead Compensator

- Increase the phase near the crossover frequency

- Increases the gain at high-frequencies
— Increases sensitivity to noise and unmodeled dynamics

42

Example 910

Lag Compensator

41



Phase Lag Compensator Phase Lag Compensator

Lead Compensator |
1= a=10 Increase low-frequency gain, 0= a=10
Trs+1 5 N\ 20 thout i i Mol 5 N\ .
De(s) ==« a>1 \ without Impacting transien \
oTrs + 1 2 ) behaviour ? _ L
D)l Co= o IDs)l So= &
| I e dea 1 I "
o . ; ;
Within interval of interest ‘Lw: T . - Set break frequency T% ‘Lw: T, o
- Phase decreased by up to 0.1 1 10 below the crossover 0.1 1 10
90° T frequency, to not impact T
- Gain increased below transient behaviours
0 . 0° _
frequency 1/T; — | - Choose « to give desired —T |
- \\ // - \\ //
Utility: —30° N L/ steady-state behaviour —30° AN L/
. N N
- Increase gain at low LD(s) —60° lim o Trs+1 o LD (s) —60°
frequencies to reduce e s»0 alrs+1 e
steady-state errors
—120° —120°
0.1 1 10 0.1 1 10
Copyright ©2015 Pearson Edu::{Al\ Rights Reserved 43 Copyright ©2015 Pearson Edu:ﬂ:{ All Rights Reserved 43
. Design a lag compensator to achieve a . Design a lag compensator to achieve a
G(s) = — : phase margin of at least 40° and a G(s) = — : phase margin of at least 40° and a
(gss + (s +1)(3s+1) steady-state error with respect to a step (ges+ (s +1)(3s+1) steady-state error with respect to a step
input better than 10%. input better than 10%.
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o m
z 0 = 0
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40 1T T T T TTT] T T 11717 T T T T 40 T T T TTT] 400ifWehaVea T T T TTTT]
—~ =45} - —~ =45} .
on on crossover of 1r/s
£ 90| | £ -9
g —135| - g —1351 < -
< —180 o —180
= =
o 225 \ ] vy \ ]
—270 Lol Lol I T R | T— —270 Lol [ I [ B T
1072 1071 10° 10! 10? 1072 1071 10° 10! 10?

Frequency rad/sec 44 Frequency rad/sec 44



Design a lag compensator to achieve a

Magnitude (dB)

Phase (deg)

1

G(s) =

(ces+1)(s+1)(3s+1)

input better than 10%.

phase margin of at least 40° and a
steady-state error with respect to a step

40

—40 |-
—80 -
—120

Add 10dB of gain
(K =3)

Phase margin of

|1
©
S ot o
T

—135 |-

I
—
o)
S

40° if we have a

crossover of 1r/s

—225 |-

—270

1072

1071 10° 10t
Frequency rad/sec

Design a lag compensator to achieve a

Magnitude (dB)

Phase (deg)

1

G(s) =

(&s-{— D(s+1)(3s+1)

input better than 10%.

phase margin of at least 40° and a
steady-state error with respect to a step

40

—40 |-
—80 |
—120

DC Gain is 10dB.
Steady-state error of *
Increase to DC Gam to 9 = 20dB
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Magnitude (dB)

Phase (deg)

1

G(s) =

(ﬁs—k— D(s+1)(3s+1)

Design a lag compensator to achieve a
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Design a lag compensator to achieve a
phase margin of at least 40° and a

G(s) =

1
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steady-state error with respect to a step

input better than 10%.
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Design a lag compensator to achieve a
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phase margin of at least 40° and a
steady-state error with respect to a step

input better than 10%.
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Design a lag compensator to achieve a
phase margin of at least 40° and a
steady-state error with respect to a step
input better than 10%.
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What happens when a — c0? \
80 — s
10K G(s) =0.06————
KDu(s) = Ka—l5 L N 5+ 2.05
alrs+1 \ ) )
Trs+ 1 2u’ . Specifications:
Trs+ + K » —
o D)l | - Zero steady-state error to step command
1 I Ces . o
=K (1 + ﬁ) 02K v d - Phase margin greater than 60
) 01K - Closed-loop time constant of 1/w. = 0.07s (w. = 14.3rad/s)
We see that a lag compensator is 0.1 02 12 10
a Pl controller with o = oo ol
o = E le 911
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Lead/Lag Compensators

Lead compensator Adds phase at crossover frequency to improve margins
Impacts frequencies above the breakpoint

Lag compensator Adds gain at low frequency to improve steady-state response
Impacts frequencies below the breakpoint

We are free to use lead and lag filters in combination, without them impacting each

other, often called lead-lag filters.

Lead/Lag Compensator
Lead — PD controller Lag — PID controller

A PID controller is a lead/lag filter

De(s) = K (Tps +1) (1 - ﬁ)




PID Lead/Lag Filter

Frequency response of PID
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- Zero steady-state error in response to a step disturbance torque

- A phase margin of approximately 60°

- As high a bandwidth as possible
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Satellite Stabilization Problem
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- Zero steady-state error in response to a step disturbance torque

- A phase margin of approximately 60°

- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque

Magnitude (dB)

- A phase margin of approximately 60°

- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque - Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60° - A phase margin of approximately 60°
- As high a bandwidth as possible - As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque

Magnitude (dB)

- A phase margin of approximately 60°

- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque

Magnitude (dB)

- A phase margin of approximately 60°

- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque

- A phase margin of approximately 60°

- As high a bandwidth as possible

Magnitude (dB)

—100 |-

80

60 -
40 -
20 -
0

—20 -
—40
—60 -
—80 -

I
Position integrator

at highest frequency
that doesn’t impact

phase margin
1 we 2

T, 5 5.5
|

0.01

Frequency rad/sec

0.5

10

Step response to reference
| | | | | | | |
[ [ [ [ [ [ [ [
Step response to torque disturbance
| | | | | | t L
0 10 20 30 40 50 60 70 80 90 100

Time (s)

52



Summary - Loop Shaping

Idea  Can relate the shape of the frequency response of the open-loop system
to the closed-loop sensitivity and complementary sensitivity functions

- KG large for small w (Steady-state error)
- KG small for large w (Modeling errors, etc)
- Crossover frequency chosen according to desired closed-loop bandwidth

- Good stability margins / slope of KG equal to —20dB/dec at crossover A Real System Design

Lead compensator Lag compensator

- Increase slope by 20dB/dec in - Use to increase gain at low
frequency range frequencies

- Use to increase slope / phase near - Decreases slope by 20dB/dec /
crossover frequency decreases phase in frequency

- PD controller is a lead il

- PI controller is a lag compensator

compensator
53
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Closed-Loop Sensitivity Step Response & Resonance Disturbance Rejection
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Step Response & Resonance Disturbance Rejection
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Closed-Loop Sensitivity Step Response & Resonance Disturbance Rejection
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Frequency Response Closed-Loop Sensitivity
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Step Response & Resonance Disturbance Rejection Result of a Scan
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