Control Systems I

Loop Shaping

Colin Iones

Laboratoire d'Automatique

Sensitivity & Complementary Sensitivity

Loop Shaping

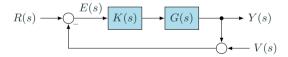
Goal

Design a controller to achieve a set of specifications on the closed-loop system

Challenge

Closed-loop transfer functions are a highly nonlinear function of the control law

$$\mathcal{T} = \frac{GK}{1 + GK} \qquad \qquad \mathcal{S} = \frac{1}{1 + GK}$$


Idea

Define closed-loop characteristics in terms of open-loop response GK.

Shaping the response GK is *linear* in K, and much easier

2

Recall: Closed-Loop Transfer Functions

Two quantities that define the performance of the system:

• Response of error E(s) to output noise V(s)

$$\mathcal{S}(s) := \frac{E(s)}{V(s)} = \frac{1}{1 + G(s)K(s)} \quad \text{Sensitivity function}$$

• Response of output Y(s) to reference R(s)

$$\mathcal{T}(s) := rac{Y(s)}{R(s)} = rac{G(s)K(s)}{1+G(s)K(s)}$$
 Complementary sensitivity function

Sensitivity & Complementary Sensitivity Functions

Sensitivity Function

$$S(s) = \frac{E(s)}{V(s)} = \frac{1}{1 + G(s)K(s)}$$

· Impact of noise on the error

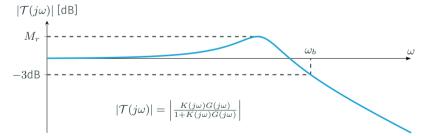
· Ideal value : 0

Complementary Sensitivity Function

$$\mathcal{T}(s) = \frac{Y(s)}{Y_c(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

· Impact of reference on the output

· Ideal value: 1


Functions are complementary:

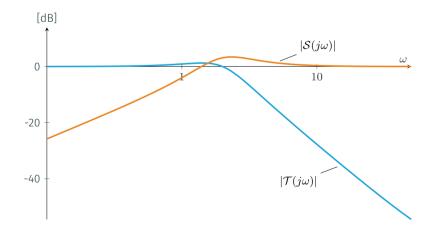
$$S(s) + T(s) = \frac{1}{1 + G(s)K(s)} + \frac{G(s)K(s)}{1 + G(s)K(s)} = 1$$

Changes in one will cause changes in the other - limits of performance

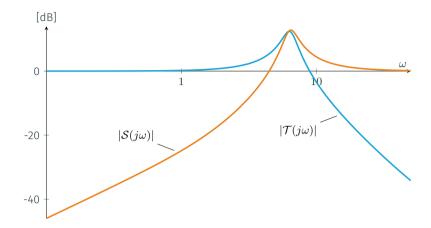
4

Complementary Sensitivity Function

Desired shape:

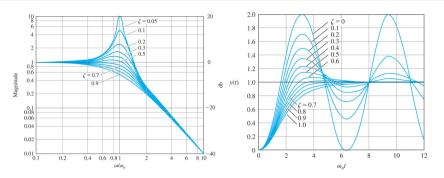

- · Low-frequency gain of 0 dB
- \cdot Small resonance peak M_r at the resonant frequency ω_r
- Large bandwidth defined by the pass-band $[0,\omega_b]$, and the cutoff-frequency ω_b
- High roll-off after ω_b to make the system insensitive to measurement noise, and unmodeled dynamics

Frequency Response

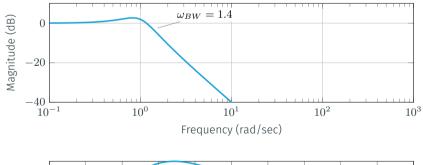

The sensitivity and complementary sensitivity functions are transfer functions:

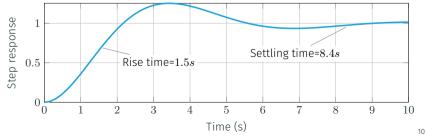
- We can compute their frequency responses: $S(j\omega)$, $T(j\omega)$
- These describe the response of the system in terms of disturbance rejection and tracking performance
- By shaping these, we can design a system with desired behaviour
- Complementarity represents an inherent tradeoff: tracking vs noise rejection
- Idea: Good tracking and noise rejection at low frequencies, bad at high

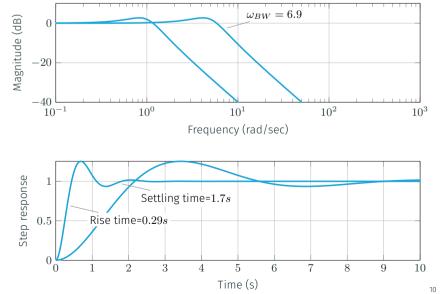
Example



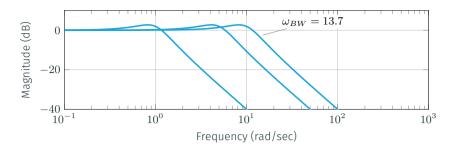
Low gain / high stability margin

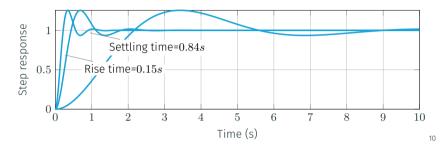

High gain / low stability margin


Relation to Time-Domain Behaviours

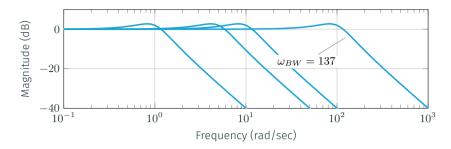

Magnitude of resonant peak related to the damping of the closed-loop system.

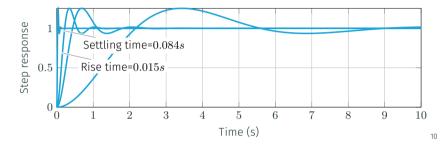
Bandwidth Defines Rise Time & Settling Time





Bandwidth Defines Rise Time & Settling Time


Bandwidth Defines Rise Time & Settling Time



Example 9.2

Bandwidth Defines Rise Time & Settling Time

Loop Shaping

Open-Loop Properties ⇔ Closed-Loop Properties

$$\mathcal{T}(j\omega) = \frac{K(j\omega)G(j\omega)}{1 + K(j\omega)G(j\omega)} = 1 - \frac{1}{1 + K(j\omega)G(j\omega)}$$

 $\mathcal{T}(j\omega) = 1 \text{ for small } \omega \qquad \qquad \leftrightarrow \qquad \qquad K(j\omega)G(j\omega) \text{ large for small } \omega$

 \rightarrow Integrator (pole at 0)

 $|\mathcal{T}(j\omega)| \ll 0dB \text{ for large } \omega \qquad \qquad \leftrightarrow \qquad \qquad |K(j\omega)G(j\omega)| \ll 0dB \text{ for large } \omega$

Low resonance peak \leftrightarrow Large stability margins

- \rightarrow Resonance when $|1 + K(j\omega_r)G(j\omega_r)|$ is small
- $\rightarrow K(j\omega_r)G(j\omega_r) \approx -1$

Specified rise time/settling time ← Crossover frequency

 \rightarrow Open-loop crossover frequency \approx Closed-loop bandwidth

Can describe good closed-loop behaviour via open-loop frequency response

12

Closed-loop Bandwidth \approxeq Crossover Frequency

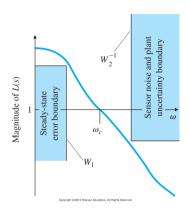
The open-loop frequency response has been designed for

$$|KG(j\omega)| \gg 1 \text{ for } \omega \ll \omega_c$$

$$|KG(j\omega)|\ll 1 \text{ for }\omega\gg\omega_c$$

The closed-loop response is therefore

$$|\mathcal{T}(j\omega)| = \left| \frac{KG(j\omega)}{1 + KG(j\omega)} \right| \approx \begin{cases} 1, & \omega \ll \omega_c \\ |KG|, & \omega \gg \omega_c \end{cases}$$

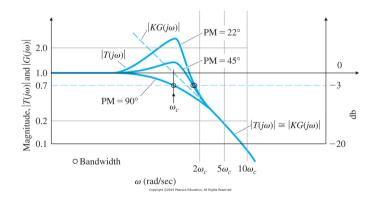

Around crossover, we have $|KG(j\omega)| \approx 1$ and $\mathcal{T}(j\omega)$ depends on the phase margin

$$KG(j\omega_c) = e^{j(\pi-\phi)} = -e^{-j\phi}$$

$$|\mathcal{T}(j\omega_c)| = \left| \frac{KG(j\omega_c)}{1 + KG(j\omega_c)} \right| = \left| \frac{-e^{-j\phi}}{1 - e^{-j\phi}} \right|$$

If
$$\phi=90^\circ$$
, then $|\mathcal{T}(j\omega_c)|=0.707=-3\mathsf{dB}$

Loopshaping Goals

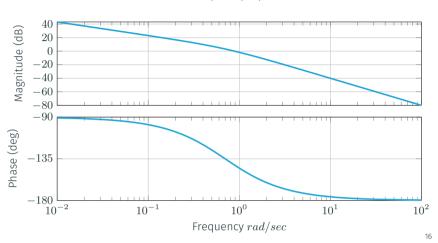

(Note: L(s) = K(s)G(s) is the **Loop gain**)

Low-frequency slope (system type) and gain are chosen for steady-state error High-frequency roll-off is determined by actuator/ sensor limitations and system bandwidth goals.

13

15

Closed-loop Bandwidth ≈ Crossover Frequency


Closed loop bandwidth is within a factor of two of the crossover frequency

$$\omega_c \le \omega_{BW} \le 2\omega_c$$

Resonance and Phase Margin

Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

Resonance and Phase Margin

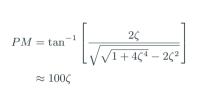
Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$$

$$\begin{array}{c} 1.00 \\ 0.90 \\ 0.80 \\ 0.70 \\ 0.00 \\$$

Damping ratio determines the step response overshoot, and the size of the resonant peak.

16


Resonance and Phase Margin

Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

With unity feedback, we get the closed-loop system

$$\mathcal{T}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

16

Loopshaping Goals

- KG large for small ω (Steady-state error)
- KG small for large ω (Modeling errors, etc)
- · Crossover frequency chosen according to desired closed-loop bandwidth
- · Good stability margins

Goal: Choose K(s) to satisfy these requirements

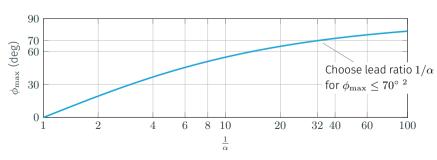
Tools:

- · Overall gain: Moves magnitude plot up and down
- · Lead compensator
- · Lag compensator

Lead Compensator

How much is the phase increased?

Max phase increase happens at the center of the pole and zero¹


$$\omega_{\rm max} = \frac{1}{T_D \sqrt{\alpha}}$$

$$\omega_{\max} = \frac{1}{T_D \sqrt{\alpha}}$$
 $\log \omega_{\max} = \frac{1}{2} \left(\log \frac{1}{T_D} + \log \frac{1}{\alpha T_D} \right)$

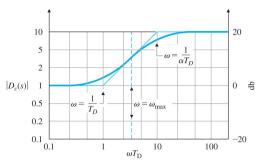
The amount of phase lead at this point is

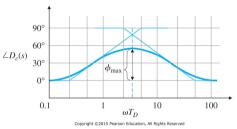
$$\sin \phi_{\max} = \frac{1 - \alpha}{1 + \alpha}$$

$$\alpha = \frac{1 - \sin \phi_{\text{max}}}{1 + \sin \phi_{\text{max}}}$$

Phase Lead Compensator

Lead Compensator


$$D_c(s) := \frac{T_D s + 1}{\alpha T_D s + 1} \quad \alpha < 1$$


Within interval of interest

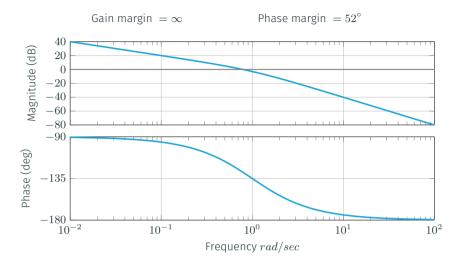
- Phase increased by $\phi_{\rm max}$
- Slope increased by 20dB/dec

Utility:

· Place near crossover frequency to increase phase

18

Example


Consider the following system

$$G(s) = \frac{1}{s(s+1)}$$

Requirements:

- Steady-state error less than 0.1 in response to a ramp reference
- Overshoot of less than $M_P < 25\%$

²Or gain at high frequencies may be too much, and multiple lead compensators should be used.

Example

Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:

 \rightarrow Error with respect to a ramp input is $\frac{1}{2}$

$$\gamma = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{1}{s+1} = 1$$

 $\gamma = \lim_{s \to 0} sKG(s) = \lim_{s \to 0} \frac{K}{s+1} = K$

Steady-state error in response to a ramp is $e_{ss}=1. \label{eq:ess}$

Try the simplest controller to improve this: Proportional gain K Loop gain is now $L(s)=KG(s)=\frac{K}{s(s+1)}.$

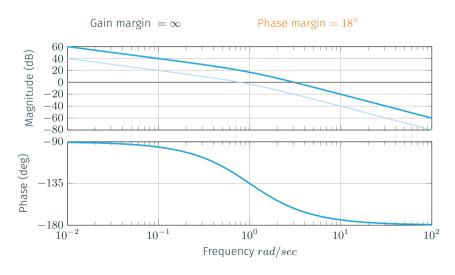
Steady-state error in response to a ramp is $e_{ss}=\frac{1}{K}$.

 $\rightarrow {\rm Choose} \; K=10$

Example

Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:


 \rightarrow Error with respect to a ramp input is $\frac{1}{2}$

$$\gamma = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{1}{s+1} = 1$$

Steady-state error in response to a ramp is $e_{ss} = 1$.

22

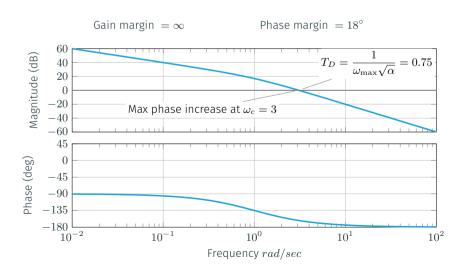
Example

Overshoot of less than $M_P \leq 25\%$

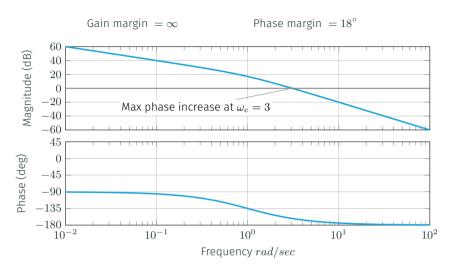
From Slide 16 we see that a phase margin of 45° will do

 \rightarrow Add a phase lead compensator

Current phase margin is $\approx 20^{\circ} \rightarrow$ Requires an increase of 25°

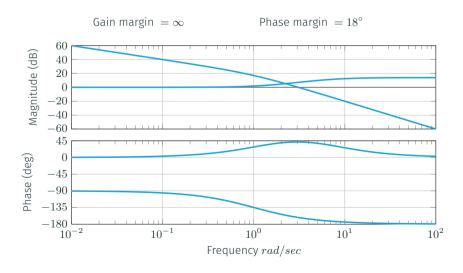

Lead compensator also increases gain \rightarrow Increases crossover frequency

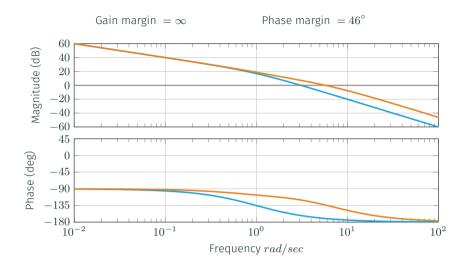
Increase phase by $\approx 40^{\circ}$ to compensate


Slide 19 shows $\alpha = 1/5$ will increase phase by $\approx 40^{\circ}$

24

Example




Example

25

Example

25

27

Lead Design Summary

Generally three criteria

1. Crossover frequency ← Bandwidth, rise time and settling time

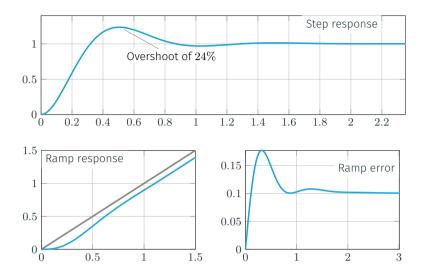
2. Phase margin \leftarrow Damping coefficient ζ and overshoot M_p

. Low-frequency gain ← Steady-state error

Design procedure

1. Choose system type and controller gain K such that

· steady-state gain targets are met


• open-loop crossover frequency is a factor of two below the desired closed-loop bandwidth

2. Determine the increase in phase margin required (add about 10° to compensate for bandwidth increase) and choose α to give the desired increase.

3. Choose $\omega_{
m max}$ to be the crossover frequency, and set $T_D=rac{1}{\omega_{
m max}\sqrt{lpha}}$

Note that this procedure may require customization for any particular system.

Example - Time Domain Result $G(s) = \frac{1}{s(s+1)} \qquad K(s) = 10 \frac{0.75s+1}{0.15s+1}$

Quick and Dirty Using Bode's Gain-Phase Relationship

Main idea: A low slope at crossover provides a good phase margin. e.g., -20dB/dec gives a phase margin of about 90°

Slope must be constant for a decade around the crossover frequency for approximation to hold. Equivalent to choosing $1/\alpha=\sqrt{5}\approx 3$.

$$D_c(s) := \frac{3s + \omega_c}{s/3 + \omega_c}$$

Ignore the phase plot, and work only with the magnitude plot.

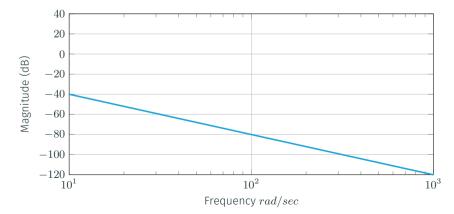
Gain-Phase Relationship

Bode Gain-Phase Theorem

For any stable minimum-phase system (i.e., one with no RHP zeros or poles), the phase of $G(j\omega)$ is uniquely related to the magnitude of $G(j\omega)$

$$\angle G(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{dM}{du}\right) W(u) du \qquad \text{(in radians)}$$

where


- $M = \log Magnitude = \ln |G(j\omega)|$
- $u = \text{normalized frequency} = \ln(\omega/\omega_0)$
- $W(u) = \text{weighting function} = \ln(\coth|u|/2)$

29

Simple Example

$$G(s) = \frac{1}{s^2}$$

Design a lead compensator for the system providing zero steady-state error in response to a ramp input, around 60° phase margin and a bandwidth of at least 100r/s.

Gain-Phase Relationship

Bode Gain-Phase Theorem (Simple form)

$$\angle G(j\omega) \approx n \times 90^{\circ}$$

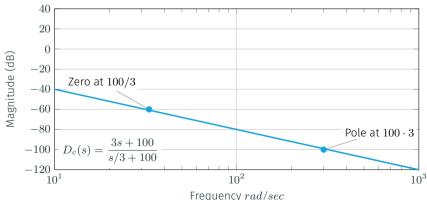
where n is the slope of $|G(j\omega)|$ in units of decade of amplitude per decade of frequency.

If the crossover frequency is ω_0 , i.e., the gain is $|K(j\omega_0)G(j\omega_0)|=1$, then

$$\cdot \angle G(j\omega_0) \approx -90^{\circ} \text{ if } n = -1 \text{ (}-20 \text{dB / dec)}$$

•
$$\angle G(j\omega_0) \approx -180^\circ$$
 if $n = -2$ (-40dB / dec)

Main idea: A low slope at crossover provides a good phase margin.

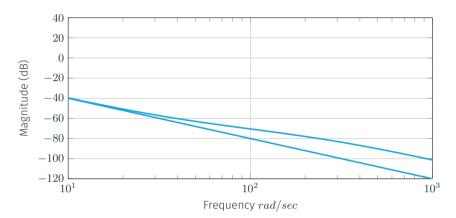

e.g., -20dB/dec gives a phase margin of about 90°

30

Simple Example

$$G(s) = \frac{1}{s^2}$$

Design a lead compensator for the system providing zero steady-state error in response to a ramp input, around 60° phase margin and a bandwidth of at least 100r/s.

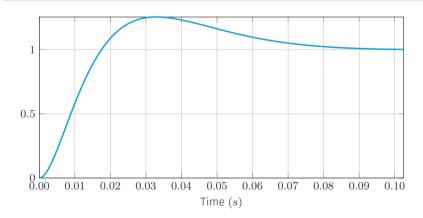


²Slope must be constant for a decade around the crossover frequency for approximation

Simple Example

$$G(s) = \frac{1}{s^2}$$

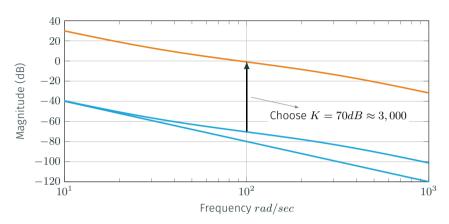
Design a lead compensator for the system providing zero steady-state error in response to a ramp input, around 60° phase margin and a bandwidth of at least 100r/s.



31

Simple Example

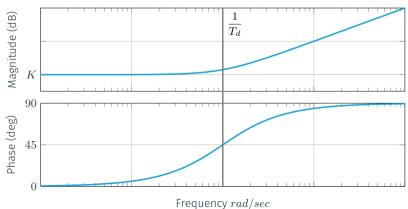
$$G(s) = \frac{1}{s^2}$$


Design a lead compensator for the system providing zero steady-state error in response to a ramp input, around 60° phase margin and a bandwidth of at least 100r/s.

Simple Example

$$G(s) = \frac{1}{s^2}$$

Design a lead compensator for the system providing zero steady-state error in response to a ramp input, around 60° phase margin and a bandwidth of at least 100r/s.


31

Interpretation of PD Controller

Consider the PD controller:

$$K(s) = K(1 + T_D s)$$

This is a lead compensator with the pole at $s=-\infty$, or $\alpha=0$.

Example - PD Controller

$$G(s) = 0.05 \frac{80 - s}{s(s + 2.05)}$$

Design a PD controller such that:

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05
- · Closed-loop step response with time-constant less than 0.07s
- Phase margin greater than 60°

33

Steady-State Error

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

Consider a proportional controller: K(s) = K

$$K(s)G(s) = K \cdot 0.05 \frac{80 - s}{s(s + 2.05)}$$

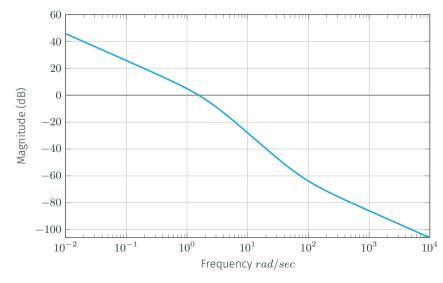
Type 1 system

- · Zero steady-state error to a step
- Steady-state error to a ramp reference r(t) = t is $1/\gamma$

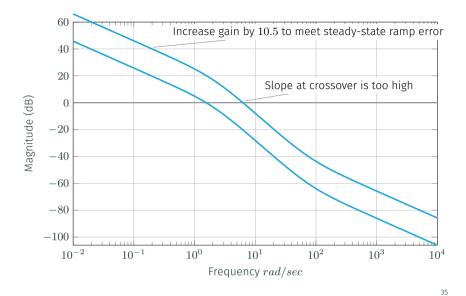
$$\gamma := \lim_{s \to 0} s^q K(s) G(s) = K \frac{B(0)}{A(0)} = K \cdot 0.05 \frac{80}{2.05} = K \cdot 1.9$$

 $\mathrm{Error} = 1/(K \cdot 1.9) \leq 0.05$

Therefore, the gain $K \ge 1/(0.05 \cdot 1.9) = 10.5$


Steady-State Error

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05


Consider a proportional controller: K(s) = K

34

Frequency Response

Frequency Response

Bandwidth and Time Constant

Assume: Phase margin of about 90° at a crossover frequency of ω_c For frequencies near ω_c , the open-loop gain is approximately:

$$K(j\omega)G(j\omega) \approx \frac{\omega_c}{j\omega}$$

The step response is approximately:

$$Y(s) = \frac{K(s)G(s)}{1 + K(s)G(s)} \cdot \frac{1}{s} \approx \frac{\frac{\omega_c}{s}}{1 + \frac{\omega_c}{s}} \cdot \frac{1}{s} = \frac{\omega_c}{s + \omega_c} \cdot \frac{1}{s} = \frac{-1}{s + \omega_c} + \frac{1}{s}$$

Gives the time response:

$$y(t) = 1 - e^{-\omega_c t}$$

The system time constant is approximately $1/\omega_c$

Add Lead Compensator

Goal: Improve phase margin

Add derivative term (Lead compensator)

$$K(s) = 10.5(1 + T_D s)$$

How to choose T_D ?

- · Sets bandwidth of the system
- · Roughly sets the time constant of the closed-loop step response

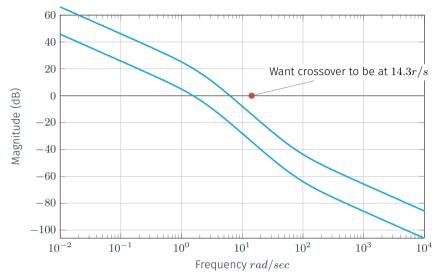
36

Add Lead Compensator

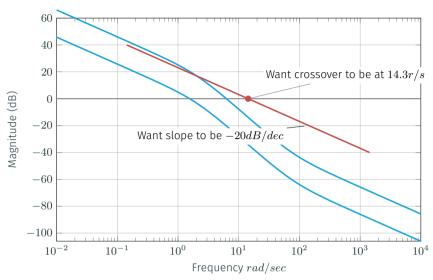
Goal: Improve phase margin

Add derivative term (Lead compensator)

$$K(s) = 10.5(1 + T_D s)$$

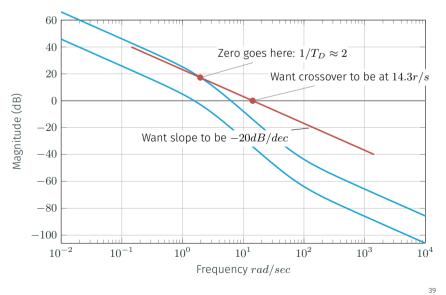

How to choose T_D ?

- · Sets bandwidth of the system
- · Roughly sets the time constant of the closed-loop step response

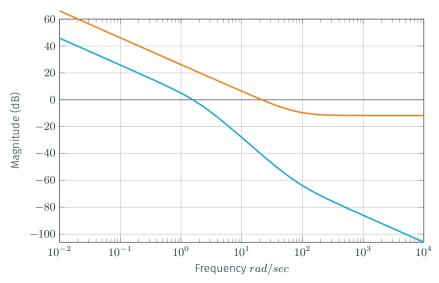

Goal: Time constant less than 0.07s

Choose $\omega_c \ge 1/0.07 = 14.3$

Frequency Response



Frequency Response



39

Frequency Response

Frequency Response

39

Example - PD Controller

$$G(s) = 0.05 \frac{80 - s}{s(s + 2.05)}$$

Design a PD controller such that:

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05
- · Closed-loop step response with time-constant less than 0.07s
- Phase margin greater than 60°

Our final controller is:

$$K(s) = 10.5 \cdot (1 + s/2)$$

40

Lead Compensator

Benefit

· Increase the phase near the crossover frequency

Downside

- Increases the gain at high-frequencies
 - ightarrow Increases sensitivity to noise and unmodeled dynamics

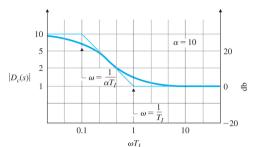
Example 9.10

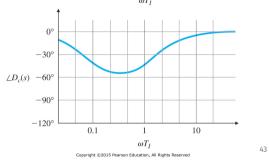
41

Lag Compensator

Phase Lag Compensator

Lead Compensator

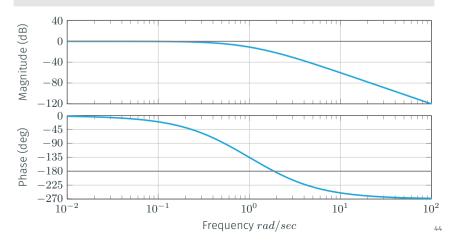

$$D_c(s) := \alpha \frac{T_I s + 1}{\alpha T_I s + 1} \quad \alpha > 1$$


Within interval of interest

- Phase decreased by up to 90°
- Gain increased below frequency $1/T_I$

Utility:

 Increase gain at low frequencies to reduce steady-state errors

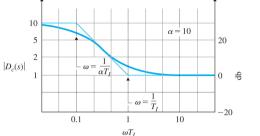


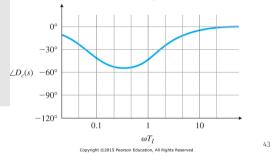
Example

$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

Phase Lag Compensator

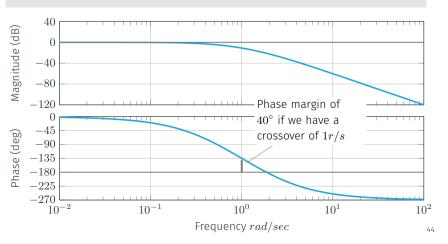

Goal


Increase low-frequency gain, without impacting transient behaviour

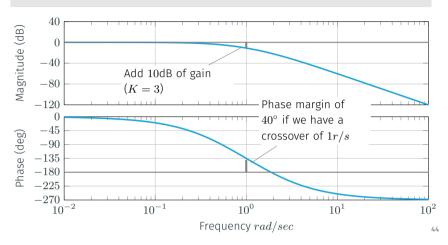
Idea

- Set break frequency $\frac{1}{T_I}$ below the crossover frequency, to not impact transient behaviours
- Choose α to give desired steady-state behaviour

$$\lim_{s \to 0} \alpha \frac{T_I s + 1}{\alpha T_I s + 1} = \alpha$$

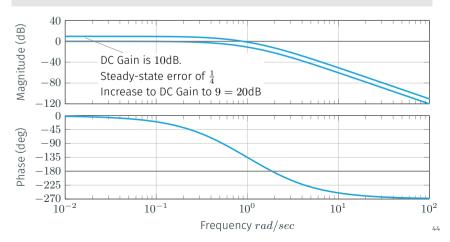


Example


$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

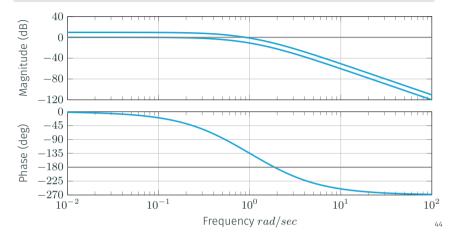
Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$


Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

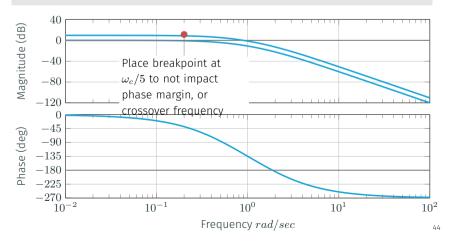
Example

$$G(s) = \frac{1}{(\frac{1}{0.5}s+1)(s+1)(\frac{1}{2}s+1)}$$

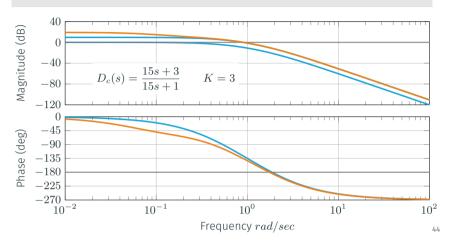

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

Example

$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$


Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

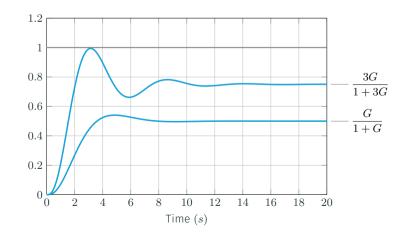
Example


$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

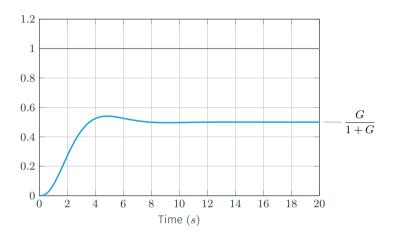
Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



Time Response

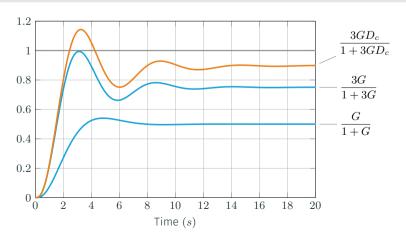
$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.


45

Time Response

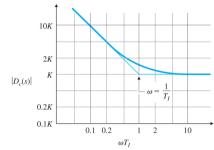
$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

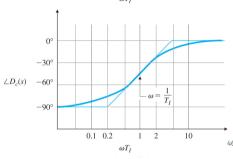

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.

Time Response

$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.




Relation to PI Controller

What happens when $\alpha \to \infty$?

$$KD_c(s) = K\alpha \frac{T_I s + 1}{\alpha T_I s + 1}$$
$$= K \frac{T_I s + 1}{T_I s + \frac{1}{\alpha}}$$
$$= K \left(1 + \frac{1}{T_I s}\right)$$

We see that a lag compensator is a PI controller with $\alpha = \infty$

Lead/Lag Compensator

Example

$$G(s) = 0.05 \frac{80 - s}{s + 2.05}$$

Specifications:

- · Zero steady-state error to step command
- Phase margin greater than 60°
- · Closed-loop time constant of $1/\omega_c=0.07$ s ($\omega_c=14.3$ rad/s)

Example 9.11

47

Lead/Lag Compensators

Lead compensator Adds phase at crossover frequency to improve margins

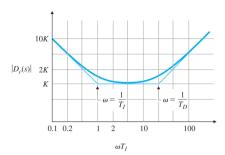
Impacts frequencies *above* the breakpoint

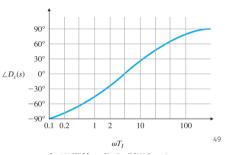
Lag compensator Adds gain at low frequency to improve steady-state response

Impacts frequencies **below** the breakpoint

We are free to use lead and lag filters in combination, without them impacting each other, often called lead-lag filters.

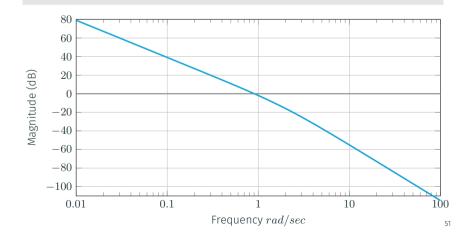
Lead \rightarrow PD controller

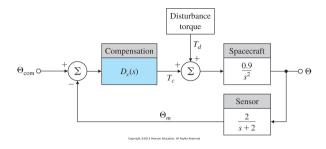

 $Lag \rightarrow PID$ controller


A PID controller is a lead/lag filter

$$D_c(s) = K \left(T_D s + 1 \right) \left(1 + \frac{1}{T_I s} \right)$$

PID Lead/Lag Filter

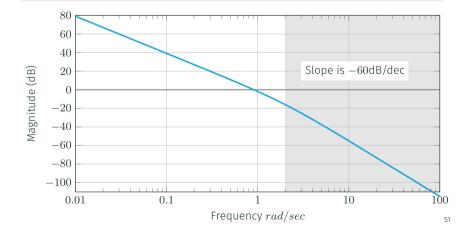

Frequency response of PID compensator for $\frac{T_I}{T_D}=20$



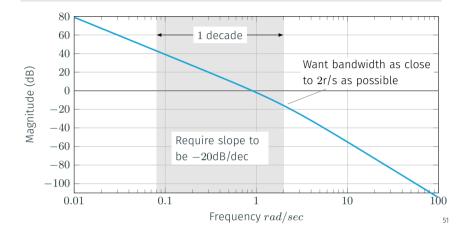
Example

- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible

Satellite Stabilization Problem

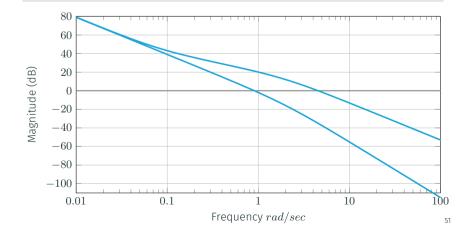

Design a PID controller for

- · Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible

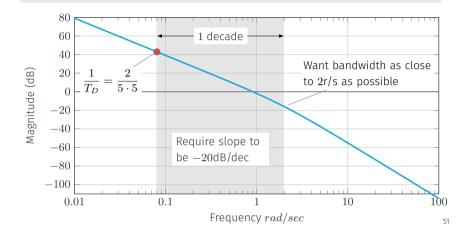

50

Example

- $\boldsymbol{\cdot}$ Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



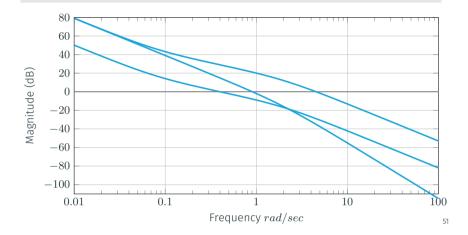
- · Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible


Example

- · Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible

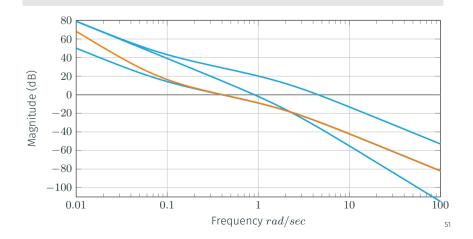

Example

- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible

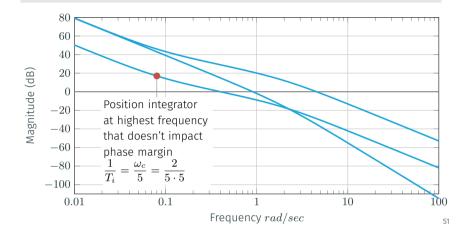


Example

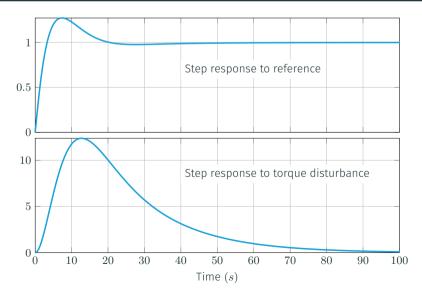
- $\boldsymbol{\cdot}$ Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible



- · Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible


Example

- · Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- · As high a bandwidth as possible



Example

- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible

Time Response

Summary - Loop Shaping

Idea Can relate the shape of the frequency response of the open-loop system to the closed-loop sensitivity and complementary sensitivity functions

Goal

- KG large for small ω (Steady-state error)
- KG small for large ω (Modeling errors, etc)
- · Crossover frequency chosen according to desired closed-loop bandwidth
- \cdot Good stability margins / slope of KG equal to $-20 \mathrm{dB/dec}$ at crossover

Lead compensator

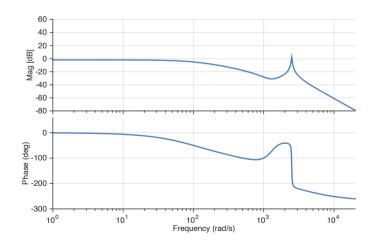
- Increase slope by 20dB/dec in frequency range
- Use to increase slope / phase near crossover frequency
- PD controller is a lead compensator

Lag compensator

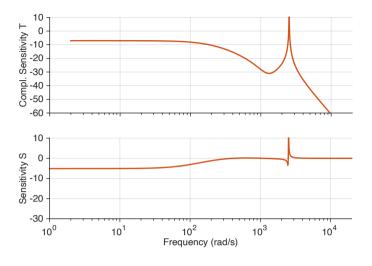
- Use to increase gain at low frequencies
- Decreases slope by 20dB/dec / decreases phase in frequency range
- PI controller is a lag compensator

53

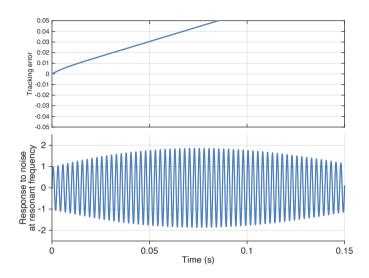
Atomic Force Microscope


$$G(s) = 8.88 \cdot 10^8 \frac{s^2 + 780s + 1.69 \cdot 10^6}{(s + 3000)(s + 1000)(s + 100)(s^2 + 50s + 6.25 \cdot 10^6)}$$

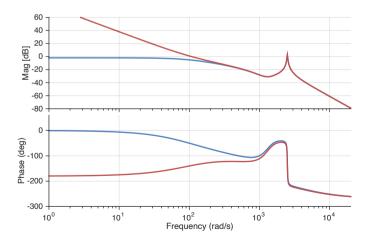
Goals


- · Track ramp inputs
- · Reduce sensitivity to noise at resonant frequency
- Minimize response time

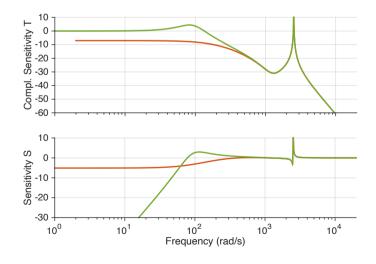
A Real System Design


Frequency Response

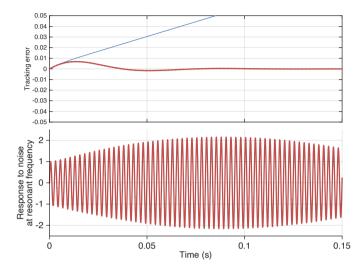
Closed-Loop Sensitivity


Step Response & Resonance Disturbance Rejection

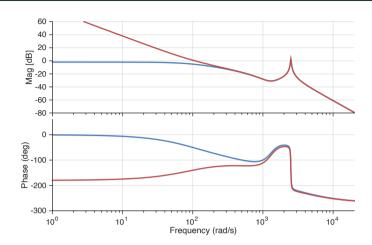
57


56

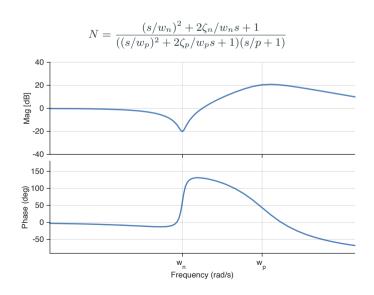
Frequency Response



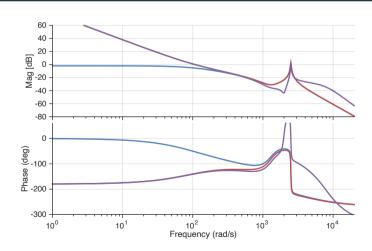
Track ramps ightarrow Add two integrators $\left(1+\frac{1}{T_is}\right)^2$


Closed-Loop Sensitivity

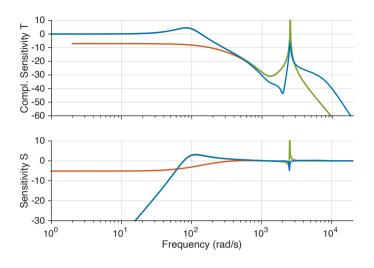
Step Response & Resonance Disturbance Rejection


Frequency Response

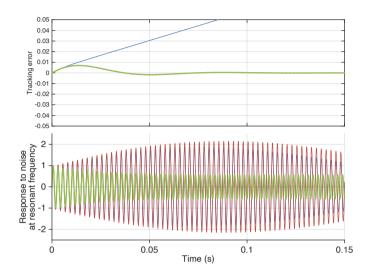
61


Reducing sensitivity at resonance, requires a *high* gain. Problem: drop of 180 degrees of phase.

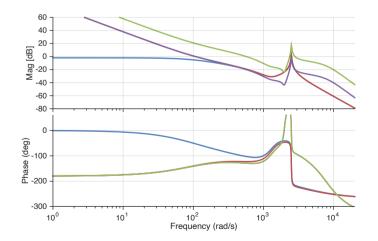
Notch Filter



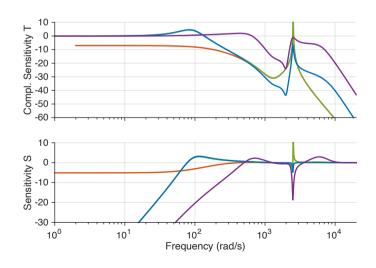
Frequency Response


60

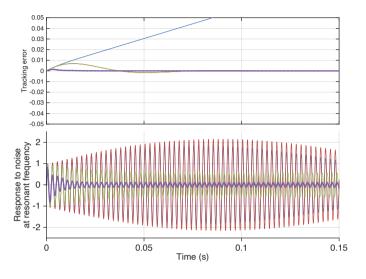
Closed-Loop Sensitivity


Step Response & Resonance Disturbance Rejection

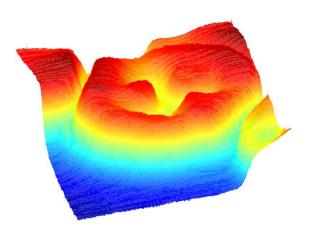
65


64

Frequency Response



Increase gain to get best tracking performance.


Closed-Loop Sensitivity

Step Response & Resonance Disturbance Rejection

Result of a Scan

